REGULATIONS FOR THE DEGREES OF MASTER OF SCIENCE (MSc) AND MASTER OF SCIENCE IN ENVIRONMENTAL MANAGEMENT (MSc[EnvMan])

For students admitted in 2018-2019 and thereafter.

(See also General Regulations and Regulations for Taught Postgraduate Curricula)

Any publication based on work approved for a higher degree should contain a reference to the effect that the work was submitted to the University of Hong Kong for the award of the degree.

The degree of Master of Science is a postgraduate degree awarded for the satisfactory completion of a prescribed course of study in one of the following three fields: Applied Geosciences, Food Industry: Management and Marketing and Food Safety and Toxicology.

The degree of Master of Science in Environmental Management is a postgraduate degree awarded for the satisfactory completion of a prescribed course of study in Environmental Management.

Admission requirements

Sc21

- (a) To be eligible for admission to the courses leading to the degree of Master of Science or Master of Science in Environmental Management, a candidate
 - (i) shall comply with the General Regulations and the Regulations for Taught Postgraduate Curricula;
 - (ii) shall hold a Bachelor's degree with honours of this University; or another qualification of equivalent standard of this University or another University or comparable institution accepted for this purpose; and
 - (iii) shall satisfy the examiners in a qualifying examination if required.
- (b) A candidate who does not hold a Bachelor's degree with honours of this University or another qualification of equivalent standard may in exceptional circumstances be permitted to register if the candidate demonstrates adequate preparation for studies at this level and satisfies the examiners in a qualifying examination.

Qualifying examination

Sc22

- (a) A qualifying examination may be set to test the candidate's academic ability to follow the course of study prescribed. It shall consist of one or more written papers or equivalent and may include a project proposal.
- (b) A candidate who is required to satisfy the examiners in a qualifying examination shall not be permitted to register until he/she has satisfied the examiners in the examination.

Award of degree

Sc23

(a) To be eligible for the award of the degree of Master of Science or Master of Science in Environmental Management, a candidate

- (i) shall comply with the General Regulations and the Regulations for Taught Postgraduate Curricula; and
- (ii) shall complete the curriculum and satisfy the examiners in accordance with these regulations and syllabuses.
- (b) A candidate (either full-time or part-time) who has not satisfied the examiners for the award of the degree of Master of Science in the field of Applied Geosciences but has satisfied the requirements for the award of Postgraduate Diploma in Earth Sciences (PGDES) (or is deemed to have satisfied such requirements by the Faculty Board) may be allowed to exit with a PGDES, subject to the approval of the Faculty Board. Those who are allowed to take this exit path will not be re-admitted to the degree of Master of Science in the field of Applied Geosciences.
- (c) The Postgraduate Diploma in Earth Sciences and the Master of Science in the field of Applied Geosciences curricula are an impermissible combination. Candidates who are awarded the Postgraduate Diploma in Earth Sciences shall not be admitted to the Master of Science in the field of Applied Geosciences curriculum.

Transfer of candidature into the Master of Science in the field of Applied Geosciences

Sc24

- (a) Subject to the approval of the Faculty Board, a candidate who has registered for the PGDES may be allowed to transfer to read the Master of Science in the field of Applied Geosciences and advanced credits of up to 45 credits may be granted. Application for the transfer must be made prior to the BoE's recommendation for conferment of the PGDES, or before August 31 of the final year of PGDES, whichever is earlier.
- (b) A candidate who has transferred his/her candidature to the Master of Science in the field of Applied Geosciences will not be awarded the PGDES. If a candidate after transferring to the Master of Science in the field of Applied Geosciences fails to complete the Master of Science, he/she may be awarded the PGDES provided that he/she has satisfied the requirements of the PGDES.

Period of study

Sc25 The curriculum of the Master of Science or the Master of Science in Environmental Management shall normally extend over one academic year of full-time study or two academic years of part-time study. Candidates in either degree shall not be permitted to extend their studies beyond the maximum period of registration of two academic years of full-time study or three academic years of part-time study, unless the otherwise permitted or required by the Board of the Faculty.

Completion of curriculum

Sc26 To complete the curriculum of the Master of Science or Master of Science in Environmental Management, a candidate

- (a) shall satisfy the requirements prescribed in TPG 6 of the Regulations for Taught Postgraduate Curricula;
- (b) shall follow courses of instruction and complete satisfactorily all prescribed written, practical and field work:
- (c) shall complete and present a satisfactory dissertation or project on an approved subject or complete courses with equivalent credits as a replacement; and
- (d) shall satisfy the examiners in all courses prescribed in the respective syllabuses.

Dissertation or Project

Sc27 The title of the dissertation or project shall

- (a) for the full-time mode of Master of Science (except MSc in Environmental Management), be submitted for approval by October 15 and the dissertation or project report shall be submitted not later than August 15 in the subsequent year;
- (b) for the full-time curriculum of MSc in Environmental Management, be submitted by October 30 and the dissertation or project report shall be submitted not later than the last Friday in June of the first year of study;
- (c) for the part-time curriculum (except Master of Science in the field of Applied Geosciences and MSc in Environmental Management), be submitted for approval by March 15 of the first year of study and the dissertation or project report shall be submitted not later than July 1 of the second year of study;
- (d) for the part-time curriculum of MSc in Environmental Management, be submitted by June 30 of the first academic year and the dissertation or project report shall be submitted not later than the last Friday in May of the second year of study.
- Sc 28 A candidate shall submit a statement that the dissertation or project represents his/her own work (or in the case of co-joint work, a statement countersigned by his/her worker, which shows his/her share of the work) undertaken after registration as a candidate for either degree.

Assessments

Sc29 The assessment in any course shall consist of elements prescribed by the course teachers, and will normally comprise either written coursework alone, or coursework combined with formal examinations; in either case participation in field work or practical work may form part of the assessment.

Sc30 A candidate who has failed to satisfy the examiners

- (a) at his/her first attempt in any course in the examination held during any of the academic years of study may be permitted to present himself/herself for re-examination in the course or courses at a specified subsequent examination, with or without repeating any part of the curriculum;
- (b) at his/her first submission of dissertation or project report may be permitted to submit a new or revised dissertation or project report within a specified period;
- (c) in any prescribed fieldwork or practical work may be permitted to present himself/herself for re-examination in fieldwork or practical work within a specified period.

Sc31 Failure to take the examination as scheduled, normally results in automatic course failure. A candidate who is unable because of illness to be present at any examination of a course, may apply for permission to be present at some other time. Any such application shall be made on the form prescribed within two weeks of the examination.

Discontinuation

Sc32 A candidate who

- has failed to satisfy the examiners in more than half the number of credits of courses during any of the academic years or in any course at a repeated attempt, or
- (b) is not permitted or fails to submit a new or revised dissertation or project report, or
- (c) has failed to satisfy the examiners in their dissertation or project report at a second attempt, may be recommended for discontinuation of studies.

Assessment results

Sc33 On successful completion of the curriculum, candidates who have shown exceptional merit may be awarded a mark of distinction, and this mark shall be recorded in the candidates' degree diploma.

Grading systems

Sc34 Individual courses shall be graded according to one of the following grading systems as determined by the Board of Examiners:

(a) Letter grades, their standard and the grade points for assessments as follows:

Grade	Standard	Grade Point
A+	Excellent	4.3
A		4.0
A-		3.7
B+		3.3
В	Good	3.0
B-		2.7
C+	Satisfactory	2.3
С		2.0
C-		1.7
D+	Pass	1.3
D		1.0
F	Fail	0

or

*(b) 'Pass' or 'Fail'

Courses which are graded according to (b) above will not be included in the calculation of the GPA.

*Only applies to certain courses in MSc in the field of Applied Geosciences

SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN THE FIELD OF APPLIED GEOSCIENCES

For students admitted in 2018-19 and thereafter.

A. COURSE STRUCTURE

To be eligible for the award of the MSc in the field of Applied Geosciences a student shall complete all core courses prescribed in a selected theme and elective courses, if any, totalling 66 credits.

ENGINEERING GEOLOGY THEME

Core Courses	
GEOS7010	^Geology principles and practice (6 credits)
GEOS7011 OR GEOS7033	*Advanced geology of Hong Kong (6 credits) OR ^ Geology of Hong Kong (6 credits)
GEOS7012	Site investigation and engineering geological techniques (6 credits)
GEOS7015	Rock mechanics (3 credits)
GEOS7016	⁺ Soil mechanics (3 credits)
GEOS7020	Project Part I (6 credits)
GEOS7021 OR	^ Geological fieldwork I (3 credits) OR *Geological fieldwork II (3 credits)
GEOS8021	Harden and large (2 and its)
GEOS8001	Hydrogeology (3 credits)
GEOS8002	Professional practice in applied geosciences (3 credits)
GEOS8003	Seminars on unforeseen ground conditions, geotechnical and environmental failures (3 credits)
GEOS8020	Project Part II (12 credits)
GEOS8101	Engineering geology and geotechnical design (6 credits)
GEOS8102	Rock engineering and geomaterials (6 credits)
GEOS8104	*Natural hillside landslide and hazard studies (3 credits)
GEOS8204	**△Basic structural mechanics and behaviour (3 credits)
Other courses	

Office Courses

GEOS7022 **Course of directed studies (3 credits)

Core courses for students with a first degree in Geology or a related subject: GEOS7011, 7012, 7015, 7016, 7020, 8001, 8002, 8003, 8020, 8021, 8101, 8102, 8104, 8204 – 66 credits. Course GEOS7022 may be substituted for course GEOS8204.

Core courses for students with a first degree in Civil Engineering: GEOS7010, 7012, 7015, 7020, 7021, 7033, 8001, 8002, 8003, 8020, 8101, 8102 – 63 credits.

^{*} For students with a first degree in Geology or a related subject

[^]For students whose first degree is not in Geology or a related subject

[△]Not a core course for students taking course GEOS7022

⁺ Students with a first degree in Civil Engineering cannot take this course for credits

[#] As directed by the programme director

Core courses for students whose first degree is not in Geology or a related subject, or Civil Engineering: GEOS7010, 7012, 7015, 7016, 7020, 7021, 7033, 8001, 8002, 8003, 8020, 8101, 8102 – 66 credits.

GENERAL APPLIED GEOSCIENCES THEME

Core Courses (57 credits)	
GEOS7010	Geology principles and practice (6 credits)
GEOS7020	Project Part I (6 credits)
GEOS7021	Geological fieldwork I (3 credits)
GEOS7027	Earth systems (6 credits)
GEOS7033	Geology of Hong Kong (6 credits)
GEOS7035	Intermediate geology (6 credits)
GEOS8002	Professional practice in applied geosciences (3 credits)
GEOS8003	Seminars on unforeseen ground conditions, geotechnical and environmental failures (3 credits)
GEOS8020	Project Part II (12 credits)
GEOS8207	Global Climate (6 credits)

	Elective Courses
ENVM7013	Sustainability, Society and Environmental Management (3 credits)
ENVM7016	Environmental Policy (3 credits)
ENVM7017	Environmental Law in Hong Kong (3 credits)

Certain courses not included in the list above may be accepted as electives at the discretion of the programme director.

Teaching will take place mainly on weekday evenings but students are expected to undertake field and laboratory work during weekends. Normally there are two evening classes each week but in some semesters there are three. Full-time students attend the same evening classes as part-time students, most of whom have day-time employment. Concentrated teaching may be held at weekends.

B. COURSE CONTENTS

GEOS7010 Geology principles and practice (6 credits)

A review of fundamental concepts in geoscience, including earth and geological processes, surface processes, minerals and rocks, geological structures and geological map interpretation. The course also introduces the rocks and geological formations of Hong Kong.

Assessment: Course work (30%) and written examination (70%)

GEOS7011 Advanced geology of Hong Kong (6 credits)

This advanced course examines specialist aspects of the rocks and geological formations and structures of Hong Kong and their significance in the context of geotechnical engineering, environmental management and resource development. Topics include volcanic and granitic rocks, sedimentary and metamorphic rocks, weathering processes, superficial deposits, geology and geological aspects of landslides.

Pre-requisite course: Pass in GEOS7010

Assessment: Course work (50%) and written examination (50%)

GEOS7012 Site investigation and engineering geological techniques (6 credits)

A professional course on the concepts and skills used in geotechnical site investigation. Topics include the design of site investigations, desk study and walkover survey, aerial photographic interpretation, soil and rock description and classification, ground investigation technology and soil and rock laboratory testing.

Assessment: Course work (30%) and written examination (70%)

GEOS7015 Rock mechanics (3 credits)

The course introduces the basic concepts of rock mechanics used in geotechnical practice. Topics include index properties, strength and deformability of intact rock; distribution and measurement of insitu stresses; and shear strength of discontinuities in rock masses.

Assessment: Course work (30%) and written examination (70%)

GEOS7016 Soil mechanics (3 credits)

An examination of the basic soil mechanics theory used in geotechnical practice. The course reviews phase relationships, soil classification, compaction, fluid flow and effective stress concepts; and provides a more detailed analysis of elasticity, shear strength and consolidation.

Assessment: Course work (30%) and written examination (70%)

GEOS7020 Project Part I (6 credits)

The first phase of an independent study of a problem in applied geosciences. It involves literature review, data collection and data analysis. Students are required to write an inception report and give a presentation on their proposed study. Work is required on the project during the summer following the second semester. Professional geologists are expected to undertake a field mapping task as part of their project. This course provides a capstone experience.

Assessment: Course work (100%)

GEOS7021 Geological fieldwork I (3 credits)

Self-directed study in the field over a 6-month period leading to the production of maps, field sheets, narrative accounts and other geological records for assessment. The fieldwork may be undertaken in association with the excursions of the Department of Earth Sciences, the local learned societies or independently. (Marked on a pass/fail basis.)

Assessment: Course work (100%)

GEOS7022 Course of directed studies (3 credits)

Studies to assist learning in the core courses, involving some of the following activities: professional activities, field work, laboratory work, internship, class exercises, tutorials and reading.

Assessment: course work (80%) and oral examination (20%)

GEOS7027 Earth systems (6 credits)

To provide an appreciation of the Earth System and the interfaces between its component parts, in order that students might appreciate how informed decisions can be made on the future exploitation and preservation of the planet. To provide a forum for discussion of global issues facing earth scientists.

Assessment: Course work (70%) and written examination (30%)

GEOS7033 Geology of Hong Kong (6 credits)

To provide an understanding of the principal components of the geology of Hong Kong and its regional setting, including the distribution and interpretation of the main rock types, age relationships; and superficial deposits; and the locations and orientations of the main regional and local structures.

Pre-requisite course: Pass in GEOS7010

Assessment: Course work (50%) and written examination (50%)

GEOS7035 Intermediate geology (6 credits)

The course gives an introduction to mineralogy, petrology and structural geology for non-geologists who have passed the prerequisite courses GEOS7010 and GEOS7021 to prepare them to take course GEOS7033 Geology of Hong Kong.

Pre-requisite courses: Pass in GEOS7010 and GEOS7021 Assessment: Course work (30%) and written examination (70%)

GEOS8001 Hydrogeology (3 credits)

To study the role of sub-surface water in engineering and environmental applications. Topics include the hydrologic cycle, properties of aquifers controlling the transmissivity storage and quality of groundwater, quantification of groundwater flow, the field investigation of groundwater and assessment of field parameters and applications of hydrogeology in engineering and environmental studies.

Assessment: Course work (30%) and written examination (70%)

GEOS8002 Professional practice in applied geosciences (3 credits)

An examination of issues in professional practice in applied geoscience, including regulation of practice, professional ethics and law, contracts and risk management.

Assessment: Course work (30%) and written examination (70%)

GEOS8003 Seminars on unforeseen ground conditions, geotechnical and environmental failures (3 credits)

A series of student-led seminars on case histories of landslides, collapses of engineering structures, excessive ground settlement and environmental disasters. Presentations of facts and opinions are given by students based on suggested reading material. This course provides a capstone experience.

Pre-requisite course: Pass in GEOS8002

Assessment: Course work (100%)

GEOS8020 Project Part II (12 credits)

The second phase of an independent study of a problem in applied geosciences culminating in the preparation of a project report of about 10,000 words. Students will be required to make a presentation of their preliminary results. This course provides a capstone experience.

Assessment: Course work (100%)

GEOS8021 Geological fieldwork II (3 credits)

Self-directed study in the field over a 6-month period leading to the production of maps, field sheets, narrative accounts and other geological records for assessment. The fieldwork may be undertaken in association with the excursions of the Department of Earth Sciences, the local learned societies or independently. (Marked on pass/fail basis.)

Assessment: Course work (100%)

GEOS8101 Engineering geology and geotechnical design (6 credits)

An examination of civil engineering design methodology and the application of soil mechanics theory and empiricism in geotechnical design. Emphasis is given to soil slopes and embankments, earth pressure and retaining structures and shallow and deep foundations.

Pre-requisite course: Pass in GEOS7016

Assessment: Course work (30%) and written examination (70%)

GEOS8102 Rock engineering and geomaterials (6 credits)

This course starts with a brief introduction to the design methodology and the systems approach in rock engineering, and is mainly focused on the collection and analyses of engineering geological data for the design of rock structures. Uses of rock mechanics input and empirical classifications in analysis and design of rock slopes, tunnel excavation and support systems, and rock foundations are demonstrated through case histories.

Pre-requisite course: Pass in GEOS7015

Assessment: Course work (30%) and written examination (70%)

GEOS8104 Natural hillside landslide and hazard studies (3 credits)

The contents of this course will include most of the following topics: classification of landslides; Hong Kong terminology, examples of natural terrain landslides and documentary sources of information; hillslope evolution, geomorphological principles (including the evolutionary landform models of Dalrymple and Hansen) and Quaternary geology of Hong Kong; hillslope hydrology, modes of groundwater flow, runoff and infiltration, piping; hydrological and morphological conditions for initiation of shallow landslides in regolith; engineering geological and geomorphological mapping; landform processes; regolith mapping, boulder identification; landslide hazard assessment; landslide susceptibility assessment for risk quantification; design event approach; landslide mobility modelling.

Assessment: Course work (30%) and written examination (70%)

GEOS8204 Basic structural mechanics and behaviour (3 credits)

The subject will cover most of the following:

Behaviour of structural members subjected to tension, compression, bending, shear and torsion. Buckling of compression members. Statically determinate and indeterminate structures; including the concept of redundancy of structural members. Load transfer mechanisms of structural systems including foundations and shoring systems. General behaviour and basic concepts in design of reinforced concrete members. Structural design of foundations and retaining walls.

Assessment: Course work (30%) and written examination (70%)

GEOS8207 Global climate (6 credits)

Processes in the oceans and atmosphere. Heating the system, development of ocean currents, winds, clouds, and resources. Effects of coupling, climate change, pollution. Atmospheric structure and composition, global ocean and atmospheric circulation patterns, El Niño-La Niña and case studies of ocean-atmosphere feedbacks, formation of winds, storms and ocean currents.

Assessment: Course work (30%) and written examination (70%)

ENVM7013 Sustainability, society and environmental management (3 credits)

This course begins with intellectual debates on the definitions, conceptions and different interpretations of the notion of sustainable development. The course then moves on to explore and analyse the implementation of the of the sustainability concept at the macro- and the micro- levels, covering a wide range of issues from international agreements and campaigns to local projects and practice. This will be followed by a number of implementation tools and techniques including community engagement and sustainability assessment. The course concludes with a series of real-life case investigations on innovative models to achieve sustainability in different contexts.

Assessment: Course work (100%)

ENVM7016 Environmental policy (3 credits)

This course focuses on key aspects of environmental policy-making and policy-implementation processes, such as how policy agendas emerge and evolve, how environmental discourse shapes policy outputs; and how institutions affect the trajectories and outcomes of environmental policy measures.

Making references to local, national and international cases of successful and not-so-successful policies that pertain to the sustainable development agenda, the course also examines the theories and praxis of policy transfer and policy convergence, as well as the perennial problematics of policy integration, policy learning and policy failure.

Assessment: Course work (100%)

ENVM7017 Environmental law in Hong Kong (3 credits)

This course focuses on the statutory interpretation of the four principal Ordinances and subsidiary legislation dealing with pollution in Hong Kong; namely the Water Pollution Control Ordinance, the Air Pollution Control Ordinance, the Noise Control Ordinance and the Waste Disposal Ordinance. Some consideration will also be given to the Dumping at Sea Ordinance, the Radiation Ordinance, the Merchant Shipping (Prevention and Control of Pollution) Ordinance, the Environmental Impact Assessment Ordinance, the Ozone Layer Protection Ordinance and international conventions effecting the law. Students will study the nature of environmental offences, including the requirement for proving "mens rea" (intent) in order for certain offences to be successfully prosecuted. Students will also be introduced to the principles of judge made law (the Common Law) and will learn to read and interpret relevant case law in order to better understand the current sentencing policies towards environmental offenders, both locally and in other Common Law jurisdictions.

Assessment: Course work (100%)

C. PROGRAMME LEARNING OUTCOMES

- 1. Can apply geological knowledge and skills in the solution of problems in the student's discipline.
- 2. Can explain, use and critically assess the use of science related to the student's discipline.
- 3. Insists on knowing the facts before making a judgement; exhibits judicial habits of mind.
- 4. Effective in defining and solving problems from first principles, without reliance on solutions from memory; can satisfactorily complete a self-directed study.
- 5. Effective in oral, written and graphical communication.
- 6. Works well in a team.
- 7. Knows the standards of conduct required by law, by the student's professional qualifying body and by the university and why it is important to uphold a high standard of professional ethics. L. Knows the specific malpractices that may be encountered in the student's profession and how to guard against malpractice.
- 8. Able to recognise, articulate and advocate the societal benefits of the application of best practice in engineering geology in the construction industry, in the use of earth resources and in the mitigation of geological risk. ¹.

1. for those taking the Engineering Geology Theme or the Engineering Geology with HKIE Approved Courses Theme of the MSc in Applied Geosciences

D. ACADEMIC ASSESSMENT

The following Grade Descriptors will be used in academic assessment:

- Grade A Is very good or excellent in using basic principles and essential skills in practice. Requires very limited supervision. Is creative, work is virtually error free and writes well. Can apply learning in unfamiliar situations.
- Grade B Is good in using the basic principles and the essential skills in practice but requires some supervision.

Grade C Is able to state most of the basic principles but is poor at using them, and the essential skills, in practice without direction.

Grade D Marginal Pass and any Pass in a supplementary examination.

Fail Does not know most of the basic principles and has not mastered the essential skills used in practice.

SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN THE FIELD OF FOOD INDUSTRY: MANAGEMENT AND MARKETING

A. COURSE STRUCTURE

All courses in this programme are compulsory. A candidate shall be examined shortly after the completion of each course.

The list of courses, and their contents set out thereafter, may be changed from time to time.

First Year

FOOD7001 Quality assurance and management (6 credits)
FOOD7002 GMP and environmental management (6 credits)
FOOD7003 Food quality preservation and evaluation (6 credits)

FOOD7004 HACCP and food laws (6 credits)

FOOD7005 R&D and export market strategies (9 credits)

Second Year

FOOD8006 Marketing management (6 credits)

FOOD8007 Financial control (6 credits)

FOOD8008 Organisational behaviour (6 credits)

FOOD8009 Project (15 credits) [Capstone experience]

Total: 66 credits

B. COURSE CONTENTS

FOOD7001 Quality assurance and management (6 credits)

An overview on quality management will be presented. Case studies will be used to generate in-depth discussion on relevant topics.

The management of food laboratories will also be described, with a review of the modes of infectious disease transmission followed by discussion on microbial and other contaminants of relevance to South East Asia. Standard assays as well as newer methods will be covered. Guidelines of the Department of Health on acceptable limits and routine inspection procedures will be discussed.

Assessment: Course work (30%); Examination (70%)

FOOD7002 GMP and environmental management (6 credits)

Good manufacturing practice has a significant impact on the daily operation of a food processing facility. Quality products and a safe work place are important components of a good company. This course will focus on issues arising from GMP and aspects of the physical design of a food processing facility which impact the safety of workers and products. There will be emphases on the sources of contamination, sanitation techniques for production site and personnel, pest control, and contingency plan for the production line. Quality assurance and HACCP will be discussed as well.

Proper handling of waste is closely related to the issue of food safety and in a broader context it has an eventual impact on the environment. This course will cover waste treatment and disposal, environmental impact assessment, operational procedures to implement ISO 14000, and laws and regulations on

FOOD7003 Food quality preservation and evaluation (6 credits)

The effects of processing and packaging on the physical and chemical characteristics of food products will be discussed. Emphasis will be placed on the freezing technology of marine products and frozen dim sums. Analytical methods for sensitive nutrients and techniques to preserve the characteristic aroma and taste of a product in processing modification will be reviewed. Issues related to nutrient enrichment and fortification will be discussed.

Sensory evaluation as an important component of food product development and marketing will be covered. Various evaluation methods and analytical techniques will be discussed in a case study setting. Assessment: Course work (30%); Examination (70%)

FOOD7004 HACCP and food laws (6 credits)

As a core quality management tool in the food industry, the relevance, impact and use of HACCP in manufacturing and catering will be discussed. Topics covered will include the integration of HACCP and ISO 9000 as well as the practical implementation of HACCP using Asian case studies.

The course will provide student with a proper perspective on local, Chinese and international food laws and regulations. Familiarisation with international agencies such as the Codex Alimentarius Commission. Issues related to food inspection, food additives, and contaminants as well as the concept of and procedural details in attaining ISO registration will be discussed.

Assessment: Course work (20%); Examination (80%)

FOOD7005 R&D and export market strategies (9 credits)

The role of research from the management perspective, the R & D process and the impact of technological innovation on the development of new products will be discussed.

Cultural aspects will be emphasized as an important consideration in developing new market frontiers. The strengths and weaknesses of major "Chinese food" manufacturers will be analyzed. Areas of potentials will be identified and explored.

Basic concepts of intellectual property rights will also be described in this course: copyright, trademarks, trade secrets, patents. Patent strategy for research-intensive technology companies. Practical aspects and international considerations in filing for patent protection.

The application of information technology in food manufacturing and catering will be discussed. Assessment: Course work (30%); Examination (70%)

FOOD8006 Marketing management (6 credits)

The course is designed to provide an understanding of the role of marketing in the business organization and its contribution to business success. Students will be taught in an applications oriented framework to become familiar with the various marketing concepts, marketing programs and planning and control of marketing strategies. On completion of the course students will be able to analyze customer requirements, the competitive environment and to formulate effective marketing program. Perspectives

of local food manufacturers will be introduced through special seminars. Assessment: Course work (20%); Examination (80%)

FOOD8007 Financial control (6 credits)

The course aims to equip non-accounting professionals with the skills required to analyse and interpret the major financial reports prepared by businesses. The focus of the course is on providing a user perspective of the financial statements rather than on specific preparation concepts. In addition, the course addresses principles of basic financial management and explains the need for internal control procedures. Particular emphasis is given to developing an understanding of the balance sheet, profit and loss statement, and cash flow statement. The relationship between the statements will be explained and illustrated in detail. A framework for making business decisions by analysing a set of financial statements using simple techniques will also be developed.

Assessment: Course work (30%); Examination (70%)

FOOD8008 Organisational behaviour (6 credits)

The course aims to equip students with a better understanding of the complex array of behaviours in organisational life. It will analyse the determinants of human behaviour in an organisation at the individual, group and organisational levels. Topics covered will include motivation, performance management, group dynamics, leadership, organisational culture, management of conflict, management ethics, and the management of change.

Assessment: Course work (60%); Examination (40%)

FOOD8009 Project (15 credits) [Capstone experience]

This is an individual or group research project to be carried out under the supervision of one or more faculty members. Students may propose their own topics and approach potential supervisors, or they may consider those suggested by the faculty members. The proposed project title must be submitted for approval before December 31 of the second year of their study. The candidate shall make a formal presentation on the subject of his project during the final semester of the teaching programme.

Assessment: Project (100%)

SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN THE FIELD OF FOOD SAFETY AND TOXICOLOGY

All courses in this programme are compulsory. A candidate shall be examined shortly after the completion of each course.

A. Course Structure

Programme Structure of the <u>Full-time</u> Mode:		
Year 1 (69 credits)		
FSTX7001	Principles of toxicology I	(9 credits)
FSTX7002	Principles of toxicology II	(9 credits)
FSTX7003	Toxicity tests and hazards evaluation methods	(9 credits)
FSTX7004	Regulatory toxicology: risk assessment, risk management and communication	(12 credits)
FSTX8005	Chemical and microbial hazards in food	(9 credits)
FSTX8006	Food safety management	(9 credits)
FSTX8007	Project [Capstone experience]	(12 credits)

Programme Structure of the <u>Part-time</u> Mode:		
Year 1 (39 credits)		
FSTX7001 FSTX7002	Principles of toxicology I Principles of toxicology II	(9 credits) (9 credits)
FSTX7003 FSTX7004	Toxicity tests and hazards evaluation methods Regulatory toxicology: risk assessment, risk management and communication	(9 credits) (12 credits)
Year 2 (30 credits)		
FSTX8005	Chemical and microbial hazards in food	(9 credits)
FSTX8006 FSTX8007	Food safety management Project [Capstone experience]	(9 credits) (12 credits)

B. Course Content

FSTX7001 Principles of toxicology I (9 credits)

This module introduces students to the general principles and practice of toxicology. The major focus of the course is on basic principles, mechanisms and common methods underpinning the science of toxicology. Selected target organ systems (e.g. respiratory, nervous and immune systems) are studied with respect to understanding how representative chemicals damage and impair their ability to function. Students will develop a fundamental understanding of how chemicals may exert toxic effects and gain insight into the importance of organ-specific toxicity.

Assessment: Course work (25%); Examination (75%)

FSTX7002 Principles of toxicology II (9 credits)

This module continues to introduce students to the general principles and practice of toxicology. The course continues to focus on basic principles, mechanisms and common methods underpinning the science of toxicology. Selected toxicants are studied with respect to their source of exposure and mechanisms of effects. Selected disease processes (e.g., mutagenesis, carcinogenesis, reproductive toxicity, teratogenesis and developmental toxicity) are studied with respect to understanding their basic pathways and common mechanisms. Selected fields are presented to give students insight into the applications of toxicology and its relationship with other fields.

Assessment: Examination (100%)

FSTX7003 Toxicity tests and hazards evaluation methods (9 credits)

This module will provide students with the current state-of-the-art methodology employed to investigate the effect of chemical and microbial toxins and environmental pollutants on living systems. Topics include exposure estimate, animal tests for acute toxicity, short-term and long-term toxicity, for mutagenicity, genotoxicity and carcinogenicity, for reproductive toxicity, teratogenicity, developmental toxicity and delayed neurotoxicity. Major focus is on the basic principles underpinning each test method including the test rationale, protocol design, limitations and data interpretation. Students will also be introduced to the basic concepts of toxicological evaluation and criteria for setting guidance values for dietary and non-dietary exposure to chemicals. The role of biochemical, metabolic and toxicokinetic studies in toxicological evaluation is also considered.

Assessment: Course work (20%); Examination (80%)

FSTX7004 Regulatory toxicology: risk assessment, risk management and communication (12 credits)

In order to fully appreciate risks that arise from human exposure to chemicals in our living environment, it is essential to quantify levels of chemical contamination in environmental media and foods, and estimate total chemical exposure from dietary and non-dietary sources. This module will provide students with intensive training to develop the necessary practical skills to measure and model the extent to which human populations come into contact with toxic agents in the environment and foods, to conduct qualitative and quantitative risk assessments, to set safe levels of chemical exposure in foods (based on local food consumption patterns), and to implement effective risk management in protecting human health and the environment. The roles of international food safety authorities such as WHO, FAO, Codex Alimentarius Commission, JECFA, IARC and OECD will be described. Introduction to local and international food laws will be provided.

Assessment: Course work (25%); Examination (75%)

FSTX8005 Chemical and microbial hazards in food (9 credits)

This module will introduce students to the chemical and microbial hazards in food and their effects on human health. Special reference is made to heavy metals, pesticides, food additives, persistent organic pollutants and natural food contaminants of current public concern. An emphasis will also be placed on developing the understanding of the actual impact of food and waterborne pathogens, their epidemiology and factors contributing to the increase in their incidence. Determination of exposure pathways and linking food hazards to human health is the primary focus. Topics include: contamination monitoring, quantification of exposure at the individual level, interactive effects of exposure to multiple risk factors, perceptions of risk and integration of laboratory science with population-based studies. Assessment: Course work (20%); Examination (80%)

FSTX8006 Food safety management (9 credits)

Good manufacturing practice has a significant impact on the daily operation of a food processing facility. Quality products and a safe work place are important components of a good company. This course will focus on issues arising from GMP and aspects of the physical design of a food processing facility which impact the safety of workers and products. In food supply chain, traceability is the ability to follow the movement of a food product through the stages of production, processing, and distribution, and is an important component of the food safety management system. As a core quality management tool in the food industry, the relevance, impact and use of ISO 22000 and HACCP in manufacturing and catering will be discussed. Topics covered will include the international/national HACCP standards, and designing safety into food products and processes as well as the practical development and implementation of a HACCP Plan using local and Asian case studies.

Assessment: Course work (15%); Examination (85%)

FSTX8007 Project (12 credits) [Capstone experience]

All students are required to undertake to attend training (up to maximum 6 months) in one of the following areas:

- Academic institutions, to carry out basic research project using the most advanced techniques in molecular biology, analytical chemistry and biomedical sciences.
- Food, chemical and pharmaceutical industries, to overlook industry procedures on ensuring that
 the emerging/newly developed food and chemical products meet regulatory standards and
 requirements and are safe for consumers; their potential health implications, and
- Government agencies, to gain knowledge on the procedures implemented by the local/national authorities in formulating science-based policies, laws and regulations to ensure the safe production and use of food and chemicals.

The candidate shall make a formal presentation on the subject of his training during the final semester of the teaching programme.

Assessment: Project (100%)

SYLLABUSES FOR THE DEGREE OF MASTER OF SCIENCE IN ENVIRONMENTAL MANAGEMENT (MSc[EnvMan])

For students admitted in 2018-2019 and thereafter.

A candidate shall follow and be examined in at least 60 credits of courses including core courses (42 - 51 credits) and elective courses (9 -18 credits). For Part-time candidates, they will normally take 30 credits in their first year of study and 30 credits in their second year of study. A 3-credit course will normally consist of 18-24 hours of lectures, seminars, workshops and/or field trips.

A. COURSE STRUCTURE

The list of courses, and their contents set out thereafter, will be changed from time to time.

Programme Structure of the <u>Part-time</u> Mode (from 2018-2019 onwards):		
The list of courses and their contents may be changed from time to time.		
	Year 1:	
Core courses (30 -	- 33 credits):	
ENVM7003	Introduction to ecology (3 credits)	
ENVM7012	Environmental economics and analysis (3 credits)	
ENVM7013	Sustainability, society and environmental management (3 credits)	
ENVM7014	Environmental quality management (6 credits)	
ENVM7015	Research methods and report writing in environmental management (6 credits)	
ENVM7016	Environmental policy (3 credits)	
ENVM7017	Environmental law in Hong Kong (3 credits)	
Select at least one field study course:		
ENVM7018	Environmental field studies (3 credits)	
ENVM7019	Ecological field studies (3 credits)	
Year 2:		
Core Courses (12 – 18 credits):		
ENVM8006	Environmental impact assessment (3 credits)	
Select either one of the two capstone experience courses, i.e. ENVM8004 or ENVM8021		

ENVM8004 #	Dissertation (15 credits) [Capstone experience]
ENVM8021	Project (9 credits) [Capstone experience]

Elective courses (9 - 18 credits): (Depending on the core courses taken):

[Indicative only: courses' availability will vary from year to year]

ENVM8003	Conservation biology and management (3 credits)
ENVM8011	Environmental auditing and reporting (3 credits)
ENVM8012	Environmental health and risk assessment (3 credits) (May be taken in Year 1 summer semester)
ENVM8013	Air and noise pollution control and management (3 credits)
ENVM8014	Special topics in environmental management (3 credits)
ENVM8015	Directed studies in environmental management (6 credits)
ENVM8016	Conservation and management of freshwater resources (3 credits)
ENVM8017	Conservation and management of marine resources (3 credits)
ENVM8018	Urban planning and environmental management (3 credits)
ENVM8019	Corporate sustainability (3 credits)
ENVM8020	Green buildings and energy management (3 credits)

<u>Notes:</u> Alternative courses from all other taught Masters' programmes at HKU might be accepted at the discretion of the Programme Director.

[±] If a part-time student wishes to take ENVM8004 Dissertation, he/she must obtain a Grade B+ or above in ENVM7015 Research methods and report writing in environmental management by May of the first study year. Students must have submitted their dissertation titles and supervisor's names to the School of Biological Sciences by June 30 and are expected to commence work on their dissertation during the summer vacation between their first and second years of study. Students are also required to attend a dissertation research colloquium in their first and second years of study. They have to deliver presentations based on their dissertation project. The presentations will be assessed and this will contribute to the final grade awarded for the dissertation. Part-time students must submit their dissertation to the School of Biological Sciences on or before the last Friday in May in the second academic year of study. On the successful completion of the degree, a copy of the outstanding dissertation may be lodged in the University Library for public access.

Programme Structure of the <u>Full-time</u> Mode (from 2018-2019) onwards	s):
--	-----------	-----

The list of courses and their contents may be changed from time to time.

Core Courses (42 – 51 credits):		
<u>ENVM7003</u>	Introduction to ecology (3 credits)	
ENVM7012	Environmental economics and analysis (3 credits)	
ENVM7013	Sustainability, society and environmental management (3 credits)	
ENVM7014	Environmental quality management (6 credits)	
ENVM7015	Research methods and report writing in environmental management (6 credits)	
ENVM7016	Environmental policy (3 credits)	
ENVM7017	Environmental law in Hong Kong (3 credits))	
ENVM8006	Environmental impact assessment (3 credits)	
Select at least one fie	ld study course:	
ENVM7018	Environmental field studies (3 credits)	
ENVM7019	Ecological field studies (3 credits)	
Select either one of t	he two capstone experience courses, i.e. ENVM8004 or ENVM8021	
ENVM8004 #	Dissertation (15 credits) [Capstone experience]	
ENVM8021	Project (9 credits) [Capstone experience]	
Elective courses (9 – (Depending on the co		
[Indicative only: cour	ses' availability will vary from year to year]	
ENVM8003	Conservation biology and management (3 credits)	
ENVM8011	Environmental auditing and reporting (3 credits)	
ENVM8012	Environmental health and risk assessment (3 credits)	
ENVM8013	Air and noise pollution control and management (3 credits)	
ENVM8014	Special topics in environmental management (3 credits)	
ENVM8015	Directed studies in environmental management (6 credits)	
ENVM8016	Conservation and management of freshwater resources (3 credits)	
ENVM8017	Conservation and management of marine resources (3 credits)	

ENVM8018	Urban planning and environmental management (3 credits)
ENVM8019	Corporate sustainability (3 credits)
ENVM8020	Green buildings and energy management (3 credits)
ENVM8022	Environmental management internship (6 credits)

<u>Notes:</u> Alternative courses from all other taught Masters' programmes at HKU might be accepted at the discretion of the Programme Director.

[±] If a full-time student wishes to take ENVM8004 Dissertation, he/she must pass a qualification assessment in September of the first study year. Students must have submitted their dissertation titles and supervisor's names to the School of Biological Sciences by October 30. Students are also required to attend a research colloquium at which presentations are made by students based on their dissertation project. The presentations will be assessed and this will contribute to the final grade awarded for the dissertation. Full-time students must submit their dissertation to the School of Biological Sciences on or before the last Friday in June in the first academic year of their study. On the successful completion of the degree, a copy of the outstanding dissertation may be lodged in the University Library for public access.

B. COURSE CONTENTS

Core Courses

ENVM7003 Introduction to ecology (3 credits)

This course deals with the ecological processes determining the distribution and abundance of organisms, and which in turn govern the structure and function of communities and ecosystems. The focus of the course is on how an understanding of ecology is important for environmental management. Together with lectures and student-centered learning, this course also incorporates a practical fieldwork component.

Assessment: Written examination (100%)

ENVM7012 Environmental economics and analysis (3 credits)

The aim of this course is to equip students with the ability to undertake economic analyses of the environment. The course provides an introduction to economic concepts and principles and applies them to the analysis and management of environmental problems. The course covers the economic understanding of environmental problems (e.g. external costs and benefits, public goods, resource scarcity), economic instruments for environmental management (e.g. taxes, subsidies, tradable permits), methods for valuing environmental goods and services (market and non-market approaches), and economic tools for supporting decision-making (e.g. cost-benefit analysis). All topics will be illustrated with current environmental and policy issues to emphasize their relevance and applicability. Assessment: Course work (60%) and written examination (40%)

ENVM7013 Sustainability, society and environmental management (3 credits)

This course begins with intellectual debates on the definitions, conceptions and different interpretations of the notion of sustainable development. The course then moves on to explore and analyse the

implementation of the of the sustainability concept at the macro- and the micro- levels, covering a wide range of issues from international agreements and campaigns to local projects and practice. This will be followed by a number of implementation tools and techniques including community engagement and sustainability assessment. The course concludes with a series of real-life case investigations on innovative models to achieve sustainability in different contexts.

Assessment: Course work (100%)

ENVM7014 Environmental quality management (6 credits)

This course introduces students to the types, sources and effects of environmental pollution and some of the key principles and strategies used in combating pollution and managing environmental quality. Topics include water and air quality management, solid waste management and noise pollution control, with an emphasis on the situation in Hong Kong.

Assessment: Course work (30%) and written examinations (70%)

ENVM7015 Research methods and report writing in environmental management (6 credits)

This course is intended both as preparation for the dissertation, which forms an important part of the study, and as a general introduction to writing reports on environmental issues. Subjects covered include: research design, research methodology (quantitative and qualitative methods; basic data processing and analysis) and report writing. Other research skills such as avoiding plagiarism, literature search and review, report writing and giving oral presentations may also be taught.

Assessment: Course work (65%) and written examination (35%)

ENVM7016 Environmental policy (3 credits)

This course focuses on key aspects of environmental policy-making and policy-implementation processes, such as how policy agendas emerge and evolve, how environmental discourse shapes policy outputs; and how institutions affect the trajectories and outcomes of environmental policy measures. Making references to local, national and international cases of successful and not-so-successful policies that pertain to the sustainable development agenda, the course also examines the theories and praxis of policy transfer and policy convergence, as well as the perennial problematics of policy integration, policy learning and policy failure.

Assessment: Course work (100%)

ENVM7017 Environmental law in Hong Kong (3 credits)

This course focuses on the statutory interpretation of the four principal Ordinances and subsidiary legislation dealing with pollution in Hong Kong; namely the Water Pollution Control Ordinance, the Air Pollution Control Ordinance, the Noise Control Ordinance and the Waste Disposal Ordinance. Some consideration will also be given to the Dumping at Sea Ordinance, the Radiation Ordinance, the Merchant Shipping (Prevention and Control of Pollution) Ordinance, the Environmental Impact Assessment Ordinance, the Ozone Layer Protection Ordinance and international conventions effecting the law. Students will study the nature of environmental offences, including the requirement for proving "mens rea" (intent) in order for certain offences to be successfully prosecuted. Students will also be introduced to the principles of judge made law (the Common Law) and will learn to read and interpret relevant case law in order to better understand the current sentencing policies towards environmental offenders, both locally and in other Common Law jurisdictions.

Assessment: Course work (100%)

ENVM7018 Environmental field studies (3 credits)

This is an experiential learning course. This course aims to broaden students' horizon and knowledge base on key aspects of environmental management and nature conservation through a series of field studies and visits to local and/or overseas organizations. Topics include, but not limited to, conservation and biodiversity management, waste and wastewater treatment processes, water treatment processes, and corporate environmental management in practices. Field studies will be conducted in form of guided visits, field work, and invited lectures or forums according to the topics involved. Study trips outside Hong Kong such as Macau, Mainland China and Taiwan may be considered. Students are required to attend at least 6 sessions organized over the study period.

Assessment: Course work (100%)

ENVM7019 Ecological field studies (3 credits)

This is an experiential learning course. This course aims to teach students with the field survey and study skills in biodiversity assessment through an intensive residential field course and some optional field trips. Rapid biodiversity assessment methods and report writing skills will be taught. Students taking this course have to conduct hands on field surveys of common plant and animal groups in Hong Kong such as vascular plants, mammals, birds, amphibians, reptiles and butterflies. Students completing this course shall be able to take part in ecological assessments.

Assessment: Course work (100%)

ENVM8004 Dissertation (15 credits) [Capstone experience]

The dissertation is an individual, independent research project carried out under the supervision of one or more faculty members. Students may propose their own topics and approach possible supervisors, or they may consider those topics suggested by faculty members. Normally, the student develops the research outline in collaboration with his or her Faculty advisor(s) and then collects data, carries out analysis and writes the report prior to the research colloquium where the student will present his/her work. The candidate shall make a formal presentation on the subject of his/her during the second semester of the teaching programme. Substantial work, in particular, data collection and analysis, is required in this course.

Assessment: Individual presentation (10%), and a dissertation report of at least 15,000 words, excluding reference list and appendices (90%)

Prerequisite: Part-time students must obtain a Grade B+ or above in ENVM7015 Research methods and report writing in environmental management by May of the first study year. Full-time students must pass a qualification assessment in September of the first study year.

ENVM8006 Environmental impact assessment (3 credits)

Environmental Impact Assessment (EIA) is one of the most important contemporary instruments of environmental management. Used widely around the world to identify the environment impacts of development projects as well as strategic plans and policies, EIA plays a key role in many regulatory systems for the environment. This course reviews the development of different approaches to EIA, basic analytical principles, administrative and legal systems for EIA, assessments at the project and strategic levels (SEA), and case study applications in Hong Kong.

Assessment: Course work (50%) and written examination (50%)

ENVM 8021 Project (9 credits) [Capstone experience]

This is a group project (2-3 students per group) to be carried out under the supervision of one or more teachers. The topic and content of the project will be agreed individually between students and the supervisor(s). Students may propose their own topics and approach potential supervisors, or they may consider those suggested by teachers. Apart from scientific research projects, creative projects such as the production of field guides, books, websites, videos, apps about the environment are encouraged. Assessment: Individual project report (60%) and group presentation (40%)

Elective Courses

ENVM8003 Conservation biology and management (3 credits)

Conservation biology is the essential scientific element in biodiversity conservation. The course will cover the basic principles and methods of conservation biology from a management perspective. In reality, successful biodiversity conservation projects often require an integration of the welfare of local communities. As such, practical examples from Hong Kong and elsewhere will be used as case studies to illustrate the importance of different elements in conserving the world's biodiversity.

Assessment: Course work (50%) and written examination (50%)

ENVM8011 Environmental auditing and reporting (3 credits)

This course provides an introduction on the concepts of environmental management, auditing and reporting. Detailed explanation of the development, implementation and continuous improvement of an environmental management system (EMS) based on ISO14001:2015 standards will be covered. With the understanding on the key elements of an EMS, audit methodology and skills based on ISO19011:2011 would be introduced with focus on environmental audit. Key elements of environmental audit under the Hong Kong EIA system and mechanism of carbon audit will also be covered. The function and importance of environmental reporting will be explained along with the contents of Global Reporting Initiative (GRI) Standards which is a guide for sustainability reporting. Assessment: Course work (100%)

ENVM8012 Environmental health and risk assessment (3 credits)

Environmental Risk Assessments (ERAs) are a tool to determine the likelihood that contaminant releases, either past, current, or future, pose an unacceptable risk to human health or the environment. Currently, ERAs are required under various regulations in many developed countries so as to support decision-makers in risk characterization or the selection of cost-effective remedial clean-up. This course introduces the theory and practice of human and ecological risk assessments. Students completing the course will gain a sound knowledge of the concepts and principles of ERAs, risk management and risk communication as applied in practice; understand the basic risk assessment tools (i.e. prospective, retrospective and tiered approaches) to environmental risk management; be able to select and apply the simpler tools to tackle risk issues; and appreciate the interpretations of risk and its role in environmental policy formulation and decision making.

Assessment: Course work (60%) and written examination (40%)

ENVM8013 Air and noise pollution control and management (3 credits)

This advanced course focuses on various technical aspects related to air and noise pollution control and their management issues. The topics include micrometeorology; air dispersion modelling; advanced air pollution control (e.g. process modification, energy audit and emission trading); case studies on control of emissions from stationary and mobile source; concept of sound propagation; basic principles of noise control; noise impact assessment and technical mitigation measures for construction, industrial, road traffic, railway and aircraft noise.

Assessment: Course work (30%) and written examination (70%)

ENVM8014 Special topics in environmental management (3 credits)

The contents of this course will vary from year to year, depending on the availability of teachers and topics, and will be announced before course selection each year. Hot topics in Hong Kong or overseas that are related to environmental management will be selected. Examples of such topics could include urban tree management; slope greening; nature conservation versus development in rural Hong Kong and China, sustainable development movements. With careful consideration of different needs of various stakeholders, various management options are reviewed and evaluated.

Assessment: Course work (100%)

ENVM8015 Directed studies in Environmental Management (6 credits)

This course provides an opportunity for students to study a topic of particular interest under the supervision of a specialist (i.e., a Faculty member) or an experienced Environmental Practitioner. The contents of this course will be agreed individually between the student and the supervisor, and may include research project, directed reading, written assignment, laboratory or field work, and/or other activities relevant to environmental management.

Assessment: A written report or other form of output to be agreed by the supervisor (50%); Supervisor's assessment (20%); Oral presentation (30%)

ENVM8016 Conservation and management of freshwater resources (3 credits)

The overall aim of this course is to introduce the global importance of freshwater resources to sustainable development of mankind. This course offers an introduction to the problems associated with human use of water and current patterns of water resource management, and explains how the characteristics of natural systems constrain sustainable use of water. Emphasis will be placed on examples of river and lake management that can indicate the reasons for success and failure of sustainable water resource use, with particular emphasis placed on regional examples. Students taking this course will gain an appreciation of the trade-offs inherent in water resource management, and the practices that can be adopted to conserve freshwater biodiversity in the complex context of maintaining human livelihoods.

Assessment: Written examination (100%)

ENVM8017 Conservation and management of marine resources (3 credits)

The marine environment has been an important source of its fortunes but today suffers from a range of perturbations, from pollution and habitat destruction, to community loss and over-exploitation. This course primarily deals with pressing issues of marine resource conservation and management in Hong Kong. An overview of the current global situation of marine resources will be presented with an emphasis on the local situation. The past and present exploitation of marine resources and human impacts on the marine ecosystem are addressed with a view to identifying problems and providing

practical solutions. Real cases are taken from Hong Kong as example to illustrate the crisis and its management options. Various management options are reviewed and evaluated with careful consideration of different needs of various stakeholders. The key topics of this course include marine pollution, habitat destruction, biological invasion, biodiversity conservation, fisheries, mariculture and harmful algal bloom.

Assessment: Course work (50%) and written examination (50%)

ENVM8018 Urban planning and environmental management (3 credits)

This course lays down the challenges of achieving environmental sustainability in cities. It highlights the important role of urban planning and its related tools and instruments in managing development pressure, mitigating environmental impacts and conserving ecological sensitive areas. The course begins with an introduction to the fundamental functions and processes of planning. Illustrated with real-life case studies, the course then focuses on the application of various planning tools and methods and their effectiveness in resolving urban-rural conflicts. These include land-use planning, planning law and enforcement, public-private partnership models, etc. Through a series of Problem-based Learning (PBL) sessions, students debate on some selected current affair on environmental planning such as planning and development of ecological sensitive area on private land, planning for facilities with environmental nuisances, planning for quality open space, agricultural planning for conservation and rural revitalization.

Assessment: Course work (100%)

ENVM8019 Corporate sustainability (3 credits)

Corporate sustainability focuses on the business sector's role and contribution to achieving sustainability. In recent years, the expectations of business to act sustainably are higher than ever before. The scope has extended from contributing to the social welfare of the society or avoiding environmental degradation to a new business approach that creates long term value for the business by embracing opportunities and managing risks deriving from economic, environmental and social developments. The course examines the commonly used tools in corporate sustainability and corporate social responsibility (CSR), including shared value, corporate community investment and clean production. It reviews the business relationships with the environment and society expressed in the concepts of sustainable production and consumption. The course also emphasizes the importance of learning about current practice in the business sector, and therefore case studies will be used.

Assessment: Course work (100%)

ENVM8020 Green buildings and energy management (3 credits)

One of the ways to tackle global climate change is to significantly enhance energy efficiency especially in buildings. This course will introduce the global trends in the green building movement with focuses on current energy management in new and existing buildings in Hong Kong e.g. BEAM Plus. The course will introduce various aspects of energy efficiency including laws and codes; assessment tools; methods to analyse energy uses in different types of buildings and practical energy conservation measures. This course stresses on practical knowledge and experiences in energy management in buildings. Thus, experienced practitioners in the field are engaged to deliver some of the course content. Assessment: Course work (100%)

ENVM8022 Environmental management internship (6 credits)

This course provides an opportunity for students to undertake an internship in environmental management in universities, NGOs or commercial companies under the supervision of an experienced Environmental Practitioner or Faculty member. The student needs to work for at least 160 hours for the internship employer on either the first, second or summer semester. During the internship, the student needs to conduct a desktop study on a topic related to the internship job duties, which should be endorsed by the course coordinator. The written report for the internship shall contain a fully referenced report for the desk top study and some sharing and reflection of the internship experiences.

Assessment: Written report (60%); Supervisor's assessment (20%); Oral presentation (20%)

Prerequisite: For Full-time students only